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1 Introduction

“Big Data” is everywhere – both the IT industry and the
scientific computing community are routinely handling
terabytes to petabytes of data [24]. This preponderance
of data has fueled the development of data-intensive scal-
able computing (DISC) systems that manage, process
and store massive data-sets in a distributed manner. For
example, Google and Yahoo have built their respective
Internet services stack to distribute processing (MapRe-
duce and Hadoop), to program computation (Sawzall and
Pig) and to store the structured output data (Bigtable and
HBase). Both these stacks are layered on their respec-
tive distributed file systems, GoogleFS [12] and Hadoop
distributed FS [15], that are designed “from scratch” to
deliver high performance primarily for their anticipated
DISC workloads.

However, cluster file systems have been used by the
high performance computing (HPC) community at even
larger scales for more than a decade. These cluster file
systems, including IBM GPFS [28], Panasas PanFS [34],
PVFS [26] and Lustre [21], are required to meet the scal-
ability demands of highly parallel I/O access patterns
generated by scientific applications that execute simul-
taneously on tens to hundreds of thousands of nodes.
Thus, given the importance of scalable storage to both
the DISC and the HPC world, we take a step back and
ask ourselves if we are at a point where we can distill the
key commonalities of these scalable file systems.

This is not a paper about engineering yet another
“right” file system or database, but rather about how
do we evolve the most dominant data storage API –
the file system interface – to provide the right abstrac-
tion for both DISC and HPC applications. What struc-
tures should be added to the file system to enable highly
scalable and highly concurrent storage? Our goal is
not to define the API calls per se, but to identify the
file system abstractions that should be exposed to pro-
grammers to make their applications more powerful and
portable. This paper highlights two such abstractions.
First, we show how commodity large-scale file sys-
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tems can support distributed data processing enabled by
the Hadoop/MapReduce style of parallel programming
frameworks. And second, we argue for an abstraction
that supports indexing and searching based on extensible
attributes, by interpreting BigTable [6] as a file system
with a filtered directory scan interface.

2 Commonality between DISC & HPC

DISC and HPC are different programming environments
that have developed disparate software systems. HPC
is commonly characterized by distributed-memory nu-
merical simulations using message passing groupware
such as MPI and tightly-coupled low-latency memory-
to-memory interconnection networks such as Infiniband.
DISC is commonly characterized by web search and data
analytics using parallel programming frameworks such
as MapReduce and low-cost loosely-coupled commodity
computers and networks such as Gigabit Ethernet. As
different as these scalable computing environments may
be, they also have common challenges. Both operate at a
scale of thousands to tens of thousands of nodes per clus-
ter, with an order of magnitude more CPU cores, making
central the issues around parallel programming, fault tol-
erance, data distribution and resource load balancing.

Scalable file systems for HPC, including GPFS [28],
PanFS [34], PVFS [26] and Lustre [21], and DISC, in-
cluding GoogleFS [12], HDFS [15] and Amazon S3 [2],
are designed to handle different workloads. But it is not
clear that they need to be disjoint, and our paper makes
a case that much of DISC functionality can be supported
by HPC file systems.

The other direction, serving HPC applications with
DISC file systems, is somewhat less clear; HPC file sys-
tems offer approximately the POSIX file system func-
tions which many DISC file systems do not. The most
often cited reason for abandoning POSIX is scalability,
especially for concurrent write sharing workloads, and
most HPC file systems have done at least a little relax-
ing of POSIX semantics as well. Perhaps by layering
HPC file system middleware, designed to simplify the
worst concurrent write HPC workloads, on top of an ex-
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isting DISC file system, DISC systems can serve HPC
applications. For example, PLFS, a checkpointing file
system used in HPC, might be stacked on a DISC file
system to allow applications to perform highly concur-
rent write shared checkpointing [3]. Moreover, despite
the author’s original purposes, programmers often use
Google’s Chubby [4] as a file system because of its sim-
ple, strong file system semantics [1]. Perhaps DISC file
systems will be drawn by their users in the direction of
stronger semantics, probably at the cost of reduced scal-
ability for the applications that need stronger semantics.

2.1 Why seek commonality?

The benefit of more commonality between HPC and
DISC file systems will be programmer productivity.1 Of-
fering services that essentially all programmers expect,
and matching their expectations for basic features and
semantics, makes programming an easier task, and pro-
grams more portable and maintainable. Note that these
benefits are achieved for many programmers even if im-
plementations are not semantically equivalent. For ex-
ample, programs written with no expectation of con-
current write sharing are portable across implementa-
tions with serial mutations [7], transactional changes
[35], non-isolated atomic write calls [23, 28], open-
close cache consistency [27] and eventually consistent
caching [33], largely because programmers avoid con-
current write sharing and treat the result of it as an error
no matter what the specific file system’s semantics.

Of course, as a program becomes more important and
emphasizes high-performance, high-availability, or high-
concurrency requirements, its programmers look at the
fine print of the file systems available to them for the ap-
propriate implementation tradeoffs. Perhaps this leads to
a purpose-built file system, tailored to one application,
but more often it leads to an external specification, typi-
cally a namespace partition, selecting which of multiple
file systems to employ. It is also common for extension
APIs to be employed to adjust implementation parame-
ters. Open modes, for example, can be used to restrict
concurrent write sharing semantics.

In software engineering, this dual-interface notion is
characterized as a base object and its meta-object inter-
face [19]. We envision the scalable file system API to
have this dual-interface nature. open(), close(),
read(), write() would be prototypical base in-
terfaces, and reliability/availability parameters such as
replica count or RAID level would be prototypical meta
interfaces. In fact, we believe that users already view
‘consistency’ as a meta interface, using open() modes

1It is not our goal to pick a winner, but rather to strengthen the field
of scalable file systems with more offerings.

or selecting among alternative file systems by pathname
specification.

3 DISC data processing extensions to
HPC file systems

Most DISC applications are characterized by parallel
processing of massive data-sets stored in the underly-
ing shared storage system; such distributed program-
ming abstractions are provided by purpose-built frame-
works like Mapreduce [9], Hadoop [13] and Dryad
[18]. These frameworks divide a large computation into
many tasks that are assigned to run on nodes that store
the desired input data, and avoiding a potential bottle-
neck resulting from shipping around terabytes of input
data. Hadoop/HDFS is an open-source implementation
of Google’s MapReduce/GoogleFS, and in this section
we will draw examples from Hadoop’s use of the HDFS
cluster file system.

At a high level HDFS’s architecture resembles a HPC
parallel file system. HDFS stores file data and metadata
on two different types of servers. All files are divided
into chunks that are stored on different data servers. The
file system metadata, including the per-file chunk layout,
is stored on the metadata server(s). HDFS differs from
HPC parallel file systems in its layout and fault tolerance
schemes.

HDFS assigns chunks to compute nodes at random,
while HPC file systems use a round robin layout over
dedicated storage servers, and HDFS exposes a file’s lay-
out information to Hadoop. This exposed layout allows
the Hadoop’s job scheduler to allocate tasks to nodes in a
manner that (1) co-locates compute with data where pos-
sible, and (2) load balances the work of accessing and
processing data across all the nodes. Thus, the scheduler
can mask sub-optimal file layout resulting from HDFS’s
random chunk placement policy with lots of work at each
node [32]. The second big difference between HDFS
and HPC file systems is its fault tolerance scheme: it
uses triplication instead of RAID. With multiple copies,
Hadoop scheduling has more load balancing choices.
The “random” assignment of file chunks to nodes is rack-
aware so the failure of an entire rack does not destroy all
copies. Hadoop also uses multiple copies to re-execute
(backup) computations if the original computation fails
to complete in the expected time.

Given the growing importance of the
Hadoop/MapReduce compute model, we ask “Could
we use a commodity HPC parallel file system in-place
of a custom-built DISC file system like HDFS?” While
most HPC file systems use separate compute and storage
systems for flexibility and manageability, most HPC
parallel file systems can also be run with data servers on
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vanilla PVFS
HDFS PVFS shim

grep performance (over a 64GB data-set on 32 nodes)
Read throughput (MB/s) 579.4 244.9 597.1
Avg CPU utilization 43% 27% 43%
Completion time (m:s) 1:45 4:08 1:46

FIGURE 1: By exposing the file layout mapping through a
non-intrusive shim layer, a commodity parallel file system
(PVFS) can match the performance of HDFS for a widely
used Hadoop-style workload (grep) on a 32-node setup.

each compute node. We built a non-intrusive shim layer
to plug a real-world parallel file system (the Parallel
Virtual File System, PVFS [26]), into the Hadoop frame-
work storing data on compute nodes [32]. This shim
layer queries file layout information from the underlying
parallel file system and exposes it to the Hadoop layer.
The shim also emulates HDFS-style triplication by
writing, on behalf of the client, to three data servers
with every application write. Figure 1 shows that for a
typical Hadoop application (grep running on 32 nodes),
the performance of shim-enabled Hadoop-on-PVFS is
comparable to that of Hadoop-on-HDFS. By simply
exposing a file’s layout information, PVFS enables the
Hadoop application to run twice as fast as it would
without exposing the file’s layout.

Most parallel large-scale file systems, like PVFS, al-
ready expose the file layout information to client mod-
ules but do not make it available to client applications.
For example, the new version 4.1 of NFS (pNFS) del-
egates file layout to client modules to allow the client
OS to make direct access to striped files [17]. If
these layout delegations were exposed to client appli-
cations to use in work scheduling decisions, as done in
Hadoop/Mapreduce, HPC and pNFS file systems could
be significantly more effective in DISC system usage.

4 DISC structured data extensions to
HPC file systems

Once the embarrassingly parallel data processing phase
is over, DISC applications often leverage structured,
schema-oriented data stores for sophisticated data analy-
sis [5, 14]. Unfortunately, traditional RDBMS designs do
not provide the desired scale and performance because of
the complexity of their 25-year-old code bases and be-
cause they are too heavily dependent on old technology
assumptions such as the relative size of main memory
and data tables, and the (mostly) OLTP dominated work-
loads [30]. Given this view point, scalable databases are
being newly designed “from-scratch” with new combina-
tions of database methods reflecting current technologies

and application requirements [6, 29].

To scale-up, many new databases are relaxing the
strong transactional guarantees – the ACID properties
– by limiting atomicity to per-object or per-row mu-
tations [6, 10], by relaxing consistency through even-
tual application-level inconsistency resolution or weak
integrity constraints [10, 29], by providing no isolation
at the system level [10], and by flexible durability guar-
antees for higher performance. In fact, we argue that the
need for extreme scale is “clouding” the divide between
file systems and databases – databases with weaker guar-
antees are starting to look more like file systems. In the
rest of this section, we will elucidate this blur in the con-
text of Google’s BigTable [6] and show how the core
BigTable properties can be incorporated into a file sys-
tem using extensible attributes.

4.1 Using extensible attributes for indexing

File systems have always maintained certain attributes
of each file with the file’s metadata. Some file systems
also offer extensible attributes: lists of name-value pairs
that applications can add to a file [8, 17], although these
are not yet widely expected and exploited by users. The
mechanism for handling extensible attributes has been in
place for some time, because access control lists are vari-
able length, and because backup systems use extended
attributes to capture implementation details enabling re-
stored file systems to better match the properties of the
original storage.

File attributes are used extensively outside the file sys-
tem for various data management tasks such as backup
and snapshots, regulation compliance, and general pur-
pose search. Typically, these external systems scan the
file system, one of the most expensive operation for me-
chanical disks, to extract attribute information and build
an external index for later querying. Sometimes file sys-
tems scans are done multiple times; for example, a scan
by the host OS’s search tools may be followed by the
user’s preferred search utility, then again by the backup
or snapshot tool used by the system. Moreover, the over-
head of these scans may get worse with optimized data
backup techniques like deduplication. It should be no
surprise that file systems are under pressure to do more
efficient metadata scans and full data scans, and to offer
event trigger interfaces to notify a variable number of ex-
ternal services of changes files [11]. It should also be no
surprise that consistency between the file system and the
external attribute index is difficult to bound or guarantee,
and that researchers have been advocating a tighter inte-
gration between file systems and attribute indices [20].

Extensible attributes are well-suited for applications
that need to search based on expressions on multiple at-
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FIGURE 2: BigTable-like multi-dimensional structured data stores (left) can be represented through file system directo-
ries (right) with extensible attributes that are stored redundantly with the directory index.

tributes. Such applications can build attribute-type spe-
cific extensible indexing structures, such as KD-trees,
that can optimize execution of queries about the respec-
tive attribute-type. For example, an astrophysics applica-
tion can build an index based on the polar co-ordinates
of the observed data (from some telescope readings) and
store it in a manner that can exploit locality specific to the
indexed attribute (i.e., the polar co-ordinates) for high-
throughput query processing. Today such application-
specific indices are opaque to the file system, stored as
data in either files or embedded with the indexed data.

4.2 External attribute “tables” as file system
“tables”

A leading example of an external store for extensible at-
tributes is Google’s BigTable [6], shown in the left of
Figure 2. In their ’WebTable’ example, each row has a
web page’s contents as one attribute (represented as one
column) and an extensible number of other attributes (as
other columns) to record all of the hyperlink anchors on
other web pages that point to this web page.

BigTable can be viewed as a “middleware” database
existing on top of a file system, GoogleFS, with sets of
rows or with column locality groups subsets of columns
of a set of rows, stored in file system files. As a database,
BigTable is not relational, supports only single row trans-
actions, with no ABORT call available to programmers,
and incomplete isolation. In as much as this restricted
database functionality is sufficient for attribute search-
ing in DISC systems, it makes a case for lightweight
database implementations, which we believe can be im-
plemented in the file system itself.

Consider a file system that offers a BigTable-like
query interface, as shown in the right of Figure 2. Each
table could be a directory, where rows will use a file

name as the primary key and columns will be the (ex-
tensible) attributes of that file stored redundantly in the
directory [3, 8, 16]. Queries on a table could be im-
plemented as extended readdir() interfaces taking a
filter or query arguments conditional on extensible at-
tributes stored redundantly in the directory and returning
any or all columns in matching rows. Such a file system
is not very different from today’s file system interface,
but its implementation contains a variety of open issues:

• Indexing: Many current file system implementa-
tions are likely to struggle with millions to billions
of files in a directory, thousands to millions of at-
tributes and high frequency of readdir() calls.
Some file systems support large directory indices,
using both hash tables [22, 28] and B-trees [31];
however, in the future, file systems may need dis-
tributed directory indices that support high mutation
rates [25].

• Scans: File systems support full scans of directo-
ries through the readdir() operation that is often
slow and has semantics that yield inaccurate scan
results (widows and orphans). Currently most file
systems store extensible attributes in blocks pointed
to by their i-nodes, so each scan must perform a
stat-and-seek for every file, which would not scale.
By storing a redundant copy of extensible attributes
in the directory, file systems can speed up attribute
scans [8, 16].

• Storage management: Can traditional stor-
age management be implemented efficiently as
“database queries” on the directories of such a file
system? How can the find operation for searching
be accelerated? How do we effectively backup this
“structured” data consisting of large number of files
in file system directories?
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• Tools and optimizations: Numerous other open
challenges present themselves when dealing with
massive number of files. How do we manage
large numbers of small, almost empty files effi-
ciently? How do we build mechanisms for high-
performance bulk loading of directories? Can ma-
terialized views of prior scans be stored encapsu-
lated in a file system’s directory representation, and
how is the space-time tradeoff managed through a
file system interface?

We think it will be interesting to see how effectively
a query-extended file system might satisfy BigTable-like
applications in HPC and DISC, and how well it might
meet the needs of storage management, regulation com-
pliance and file system search.

5 Summary

Given the importance of the file system interface to ap-
plications of all types, this paper poses the question:
What is the “least common denominator” functional-
ity that we should put in the file system that will allow
HPC and DISC programmers to make scalable appli-
cations portable? Based on our experience and well-
known use cases, we propose a couple of new ab-
stractions, including exposing the file layout informa-
tion for the Hadoop/MapReduce applications and, most
intriguingly a flexible query interface inspired by the
lightweight structured data-stores used in data-intensive
scalable computing today. Our goal is to start a broader
discussion about the right file system functionality and
interfaces for scalable computing and how the pervasive
search functionality should be integrated with file sys-
tems.
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